Fat is the most valuable food known to Man
PROFESSOR JOHN YUDKIN
Introduction
We now know that we should eat a diet that is low in carbohydrates. But a plethora of books published in the last decade have been low-carb, high-protein, or low-carb, high-fat, or low-carb, high-'good'-fats, or all sorts of other mixtures. In other words, the real confusion lies in what we should replace the carbohydrates with: for example, should it be protein or fats? And if fats, what sort of fats? This article, I hope, will answer the question and put any doubts out of your mind. In a nutshell, carbs should be replaced with fats, and those fats should be mainly from animal sources.
There are only two choices: Protein or fat.
ATP: our bodies' fuel
The fuel that our body cells use for energy is actually neither glucose nor fat, it is a chemical called adenosine triphosphate (ATP). A typical human cell may contain nearly one billion molecules of ATP at any one moment, and those may be used and re-supplied every three minutes.[i] This huge demand for ATP, and our evolutionary history, has resulted in our bodies' developing several different pathways for its manufacture.
Oxygen and mitochondria
Living organisms have two means to produce the energy they need to live. The first is fermentation, a primitive process that doesn't require the presence of oxygen. This is the way that anaerobic (meaning 'without oxygen') bacteria break down glucose to produce energy. Our body cells can use this method. The second — aerobic (meaning 'using oxygen') — method began after the Earth began to cool down and its atmosphere became rich in oxygen. After this event, a new type of cell — a eukaryotic cell — evolved to use it. Today all organisms more complex than bacteria use this property and all animal life requires oxygen to function. When we breathe in, our lungs are used to extract the oxygen in air and pass it to the bloodstream for transport through the body. And in our bodies, it is our body cells' mitochondria — little power plants that produce most of the energy our bodies need — that use this oxygen. The process is called 'respiration'. This process takes the basic fuel source and oxidizes it to produce ATP. The numbers of mitochondria in each cell varies, but as much as half of the total cell volume can be mitochondria. The important point to note is that mitochondria are primarily designed to use fats.
Which source of base material is best?
The question now, in this era of dietary plenty, is: Which source is healthiest? There are three possible choices:
Not all cells in our bodies use the same fuel. This means that when we limit carb intake, the same energy sources must be used, but a greater amount of energy must be derived from fatty acids and the ketones derived from fatty acids, and less energy from glucose. Sources of glucoseTo understand how a low carb diet works, we need to look at how we eat. This process is one of eating, digestion, hunger and eating again. During our evolution, we also must have experienced long periods when food was in short supply and we starved. This is a pattern our bodies are adapted to. And they have developed mechanisms to cope with a wide range of circumstances. Firstly, the human body must contain adequate levels of energy to sustain the essential body parts that rely on glucose. The brain and central nervous system may be a particular case as, although the brain represents only a small percentage of body weight, it uses between twenty and fifty percent of all the resting energy used by the body. Fortunately the brain can also use ketone bodies derived from fats. During fasting in humans, and when we are short of food, blood glucose levels are maintained by the breakdown of glycogen in liver and muscle and by the production of glucose primarily from the breakdown of muscle proteins in a process called gluconeogenesis, which literally means 'glucose new birth'. The case for getting energy from fat and ketonesWhen most people think of eating a low-carb diet, they tend to think of it as being a protein-based one. This is false. All traditional carnivorous diets, whether eaten by animals or humans, are more fat than protein with a ratio of about eighty percent of calories from fat and twenty percent of calories from protein. Similarly, the main fuel produced by a modern low-carb diet should also be fatty acids derived from dietary fat and body fat. We find in practice that free fatty acids are higher in the bloodstream on a low-carb diet compared with a conventional diet. The case against getting energy from proteinWe know, then, that dietary fats can produce all the energy the body needs, either directly as fatty acids or as ketone bodies. But, as there is still some debate about the health implications of using fats, why not play safe and eat more protein? 'At our request he began eating lean meat only, although he had previously noted, in the North, that very lean meat sometimes produced digestive disturbances. On the third day nausea and diarrhea developed. When fat meat was added to the diet, a full recovery was made in two days.' This was a clinical study, but Stefansson had already lived for nearly twenty years on an all-meat diet with the Canadian Inuit. He and his team suffered no ill effects whatsoever. Low-carb, high-fat diet and weight lossThere is just one other consideration: If you want to lose weight, the actual material you want to rid your body of is fat. But to do that you have to change your body from using glucose as a fuel to using fat ? including your own body fat. This is another reason not to use protein as a substitute for carbs, as protein is also converted to glucose. So what levels of carbs, fats and proteins are required?Clinical experience and studies into low-carb diets over the last century suggest that everybody has a threshold level of dietary carbohydrate intake where the changeover from glucose-burning to fat and ketone burning takes place. This varies between about sixty-five and 180 grams of carbs per day. If your carb intake is below this threshold, then your body fat will be broken down to generate ketones to supply your brain and other cells that would normally use glucose. In the early trials for the treatment of obesity, carb levels were very much reduced to supply only about ten percent of calories. This works out at around fifty or sixty grams of carb for a 2,000 calorie daily intake.
Or put another way, as it is difficult to work out percentages in this way, fifty to seventy-five grams of carb and the rest from meat, fish, eggs, cheese, and their natural fats. Potential for other diseasesThe traditional Inuit (Eskimo) diet is a no-carb diet. It is notable that the Inuit diet described by Drs Vilhjalmur Stefansson and Hugh Sinclair in the 1950s is very similar in regard to percentages of fat/protein/carb intake to the experimental low-carb diets used in recent obesity studies. The Inuit diet was comprised of seal, whale, salmon, and a very limited amount of berries and the partially digested contents of animals' stomachs. On this diet, blood cholesterol levels were very high as were free fatty acids, but ? and this in much more important ? triglycerides were low. It is interesting to note that the Inuit were of great interest to research scientists because they had practically none of the diseases we suffer, including obesity, coronary heart disease and diabetes mellitus. |